Paper

Paper of any type conference or journal

Ionization injection of highly-charged copper ions for laser driven acceleration from ultra-thin foils

Publication type
Citation

J. Li, A. V. Arefiev, S. S. Bulanov, D. Kawahito, M. Bailly-Grandvaux, G. Petrov, C. McGuffey, and F. Beg, "Ionization injection of highly-charged copper ions for laser driven acceleration from ultra-thin foils", Scientific Reports 9, 666 (2019).

Abstract

Laser-driven ion acceleration is often analyzed assuming that ionization reaches a steady state early in the interaction of the laser pulse with the target. This assumption breaks down for materials of high atomic number for which the ionization occurs concurrently with the acceleration process. Using particle-in-cell simulations, we have examined acceleration and simultaneous field ionization of copper ions in ultra-thin targets (20–150  nm thick) irradiated by a laser pulse with intensity 1 × 1021 W/cm2. At this intensity, the laser pulse drives strong electric fields at the rear side of the target that can ionize Cu to charge states with valence L-shell or full K-shell. The highly-charged ions are produced only in a very localized region due to a significant gap between the M- and L-shells’ ionization potentials and can be accelerated by strong, forward-directed sections of the field. Such an “ionization injection” leads to well-pronounced bunches of energetic, highly-charged ions. We also find that for the thinnest target (20  nm) a push by the laser further increases the ion energy gain. Thus, the field ionization, concurrent with the acceleration, offers a promising mechanism for the production of energetic, high-charge ion bunches.

Highly collimated electron acceleration by longitudinal laser fields in a hollow-core target

Publication type
Citation

Z. Gong, A. P. L. Robinson, X. Q. Yan, and A. V. Arefiev, "Highly collimated electron acceleration by longitudinal laser fields in a hollow-core target", Plasma Phys. Control. Fusion 61 035012 (2019).

Abstract

The substantial angular divergence of electron beams produced by direct laser acceleration (DLA) is often considered as an inherent negative feature of the mechanism. The divergence however arises primarily because the standard approach relies on transverse electron oscillations and their interplay with the transverse electric fields of the laser pulse. We consider a conceptually different approach to DLA that leverages longitudinal laser electric fields that are present in a tightly focused laser beam. A structured hollow-core target is used to enhance the longitudinal fields and maintain them over a distance much longer than the Rayleigh length by guiding the laser pulse. Electrons are injected by the transverse laser electric field into the channel and then they are accelerated forward by the pulse, generating an electron current. We show that the forces from electric and magnetic fields of this electron population compensate each other, creating a favorable configuration without a strong restoring force. We use two-dimensional particle-in-cell simulations to demonstrate that a low divergence energetic electron beam with an opening angle of less than 5° can be generated in this configuration. Most of the energy is transferred to the electrons by the longitudinal laser electric field and, given a sufficient acceleration distance, super-ponderomotive energies can be realized without sacrificing the collimation.

High-angle deflections of the energetic electrons by a voluminous magnetic structure in near-normal intense laser-plasma interactions

Publication type
Citation

J. Peebles, A. V. Arefiev, S. Zhang, C. McGuffey, M. Spinks, J. Gordon, E. W. Gaul, G. Dyer, M. Martinez, M. E. Donovan, T. Ditmire, J. Park, H. Chen, H. S. McLean, M. S. Wei, S. I. Krasheninnikov, and F. N. Beg, "High-angle deflections of the energetic electrons by a voluminous magnetic structure in near-normal intense laser-plasma interactions", Phys. Rev. E 98, 053202 (2018).

Abstract

The physics governing electron acceleration by a relativistically intense laser is not confined to the critical density surface; it also pervades the subcritical plasma in front of the target. Here particles can gain many times the ponderomotive energy from the overlying laser and strong fields can grow. Experiments using a high-contrast laser and a prescribed laser prepulse demonstrate that development of the preplasma has an unexpectedly strong effect on the most energetic, superponderomotive electrons. The presented two-dimensional particle-in-cell simulations reveal how strong, voluminous magnetic structures that evolve in the preplasma impact high-energy electrons more significantly than low-energy ones for longer pulse durations and how the common practice of tilting the target to a modest incidence angle can be enough to initiate strong deflection. The implications are that multiple angular spectral measurements are necessary to prevent misleading conclusions from past and future experiments.

The unexpected role of evolving longitudinal electric fields in generating energetic electrons in relativistically transparent plasmas

Publication type
Citation

L. Willingale, A. V. Arefiev, G. J. Williams, H. Chen, F. Dollar, A. U. Hazi, A. Maksimchuk, M. J.-E. Manuel, E. Marley, W. Nazarov, T. Z. Zhao, and C. Zulick, "The unexpected role of evolving longitudinal electric fields in generating energetic electrons in relativistically transparent plasmas", New J. Phys. 20 093024 (2018).

Abstract

Superponderomotive-energy electrons are observed experimentally from the interaction of an intense laser pulse with a relativistically transparent target. For a relativistically transparent target, kinetic modeling shows that the generation of energetic electrons is dominated by energy transfer within the main, classically overdense, plasma volume. The laser pulse produces a narrowing, funnel-like channel inside the plasma volume that generates a field structure responsible for the electron heating. The field structure combines a slowly evolving azimuthal magnetic field, generated by a strong laser-driven longitudinal electron current, and, unexpectedly, a strong propagating longitudinal electric field, generated by reflections off the walls of the funnel-like channel. The magnetic field assists electron heating by the transverse electric field of the laser pulse through deflections, whereas the longitudinal electric field directly accelerates the electrons in the forward direction. The longitudinal electric field produced by reflections is 30 times stronger than that in the incoming laser beam and the resulting direct laser acceleration contributes roughly one third of the energy transferred by the transverse electric field of the laser pulse to electrons of the super-ponderomotive tail.

Generation of ultrahigh field by micro-bubble implosion

Publication type
Citation

M. Murakami, A. Arefiev, and M. A. Zosa, "Generation of ultrahigh field by micro-bubble implosion", Scientific Reports 8 7537 (2018).

Abstract

Breaking the 100-MeV barrier for proton acceleration will help elucidate fundamental physics and advance practical applications from inertial confinement fusion to tumour therapy. Herein we propose a novel concept of bubble implosions. A bubble implosion combines micro-bubbles and ultraintense laser pulses of 1020–1022  W cm−2 to generate ultrahigh fields and relativistic protons. The bubble wall protons undergo volumetric acceleration toward the centre due to the spherically symmetric Coulomb force and the innermost protons accumulate at the centre with a density comparable to the interior of a white dwarf. Then an unprecedentedly high electric field is formed, which produces an energetic proton flash. Three-dimensional particle simulations confirm the robustness of Coulomb-imploded bubbles, which behave as nano-pulsars with repeated implosions and explosions to emit protons. Current technologies should be sufficient to experimentally verify concept of bubble implosions.

Interaction of an electron with coherent dipole radiation: role of convergence and anti-dephasing

Publication type
Citation

A. P. L. Robinson and A. Arefiev, "Interaction of an electron with coherent dipole radiation: role of convergence and anti-dephasing", Phys. Plasmas 25 053107 (2018).

Abstract

The impact of longitudinal electric fields that are present in intense focusing and defocusing electromagnetic pulses on electron acceleration is investigated. These fields are typically much weaker than the transverse fields, but it is shown that they can have a profound effect on electron energy gain. It is shown that the longitudinal electric field of a defocusing pulse is directed backward along the trajectory of an accelerated electron, which leads to a continuous net energy gain. At the same time, the effect of the transverse oscillating electric field in a defocusing pulse is to reduce the electron energy over multiple oscillations. In contrast to a well-known interaction with a plane wave, the electron is able to retain a substantial amount of energy following its interaction with a defocusing pulse. The roles of the transverse and longitudinal electric fields are reversed in a focusing pulse, which leads to a reduction in the energy retention. The present analysis underscores the importance of relatively weak oscillating electric fields in focusing and defocusing pulses.

Laser-driven strong magnetostatic fields with applications to charged beam transport and magnetized high energy-density physics

Publication type
Citation

J.J. Santos, M. Bailly-Grandvaux, M. Ehret, A. Arefiev, D. Batani, F.N. Beg, A. Calisti, S. Ferri, R. Florido, P. Forestier-Colleoni, S. Fujioka, M.A. Gigosos, L. Giuffrida, L. Gremillet, J.J. Honrubia, S. Kojima, Ph. Korneev, K.F.F. Law, J.-R. Marques, A. Morace, C. Mosse, O. Peyrusse, S. Rose, M. Roth, S. Sakata, G. Schaumann, F. Suzuki-Vidal, V.T. Tikhonchuk, T. Toncian, N. Woolsey, and Z. Zhang, "Laser-driven strong magnetostatic fields with applications to charged beam transport and magnetized high energy-density physics", Phys. Plasmas 25 056705 (2018).

Abstract

Powerful nanosecond laser-plasma processes are explored to generate discharge currents of a few 100  kA in coil targets, yielding magnetostatic fields (B-fields) in excess of 0.5 kT. The quasi-static currents are provided from hot electron ejection from the laser-irradiated surface. According to our model, which describes the evolution of the discharge current, the major control parameter is the laser irradiance Ilasλ2las. The space-time evolution of the B-fields is experimentally characterized by high-frequency bandwidth B-dot probes and proton-deflectometry measurements. The magnetic pulses, of ns-scale, are long enough to magnetize secondary targets through resistive diffusion. We applied it in experiments of laser-generated relativistic electron transport through solid dielectric targets, yielding an unprecedented 5-fold enhancement of the energy-density flux at 60  μm depth, compared to unmagnetized transport conditions. These studies pave the ground for magnetized high-energy density physics investigations, related to laser-generated secondary sources of radiation and/or high-energy particles and their transport, to high-gain fusion energy schemes, and to laboratory astrophysics.

Leveraging extreme laser-driven magnetic fields for gamma-ray generation and pair production

Publication type
Citation

O. Jansen, T. Wang, D. Stark, E. d'Humières, T. Toncian, and A. Arefiev, "Leveraging extreme laser-driven magnetic fields for gamma-ray generation and pair production", Plasma Phys. Control. Fusion 60 054006 (2018).

Abstract

The ability of an intense laser pulse to propagate in a classically over-critical plasma through the phenomenon of relativistic transparency is shown to facilitate the generation of strong plasma magnetic fields. Particle-in-cell simulations demonstrate that these fields significantly enhance the radiation rates of the laser-irradiated electrons, and furthermore they collimate the emission so that a directed and dense beam of multi-MeV gamma-rays is achievable. This capability can be exploited for electron–positron pair production via the linear Breit–Wheeler process by colliding two such dense beams. Presented simulations show that more than 103 pairs can be produced in such a setup, and the directionality of the positrons can be controlled by the angle of incidence between the beams.

Kinetic simulations of X-B and O-X-B mode conversion and its deterioration at high input power

Publication type
Citation

A. V. Arefiev, I. Y. Dodin, A. Köhn, E. J. Du Toit, E. Holzhauer, V. F. Shevchenko, and R. G. L. Vann, "Kinetic simulations of X-B and O-X-B mode conversion and its deterioration at high input power", Nucl. Fusion 57 116024 (2017).

Abstract

Spherical tokamak plasmas are typically overdense and thus inaccessible to externally-injected microwaves in the electron cyclotron range. The electrostatic electron Bernstein wave (EBW), however, provides a method to access the plasma core for heating and diagnostic purposes. Understanding the details of the coupling process to electromagnetic waves is thus important both for the interpretation of microwave diagnostic data and for assessing the feasibility of EBW heating and current drive. While the coupling is reasonably well–understood in the linear regime, nonlinear physics arising from high input power has not been previously quantified. To tackle this problem, we have performed one- and two-dimensional fully kinetic particle-in-cell simulations of the two possible coupling mechanisms, namely X-B and O-X-B mode conversion. We find that the ion dynamics has a profound effect on the field structure in the nonlinear regime, as high amplitude short-scale oscillations of the longitudinal electric field are excited in the region below the high-density cut-off prior to the arrival of the EBW. We identify this effect as the instability of the X wave with respect to resonant scattering into an EBW and a lower-hybrid wave. We calculate the instability rate analytically and find this basic theory to be in reasonable agreement with our simulation results.

Electron confinement by laser-driven azimuthal magnetic fields during direct laser acceleration

Publication type
Citation

T. Wang, Z. Gong, and A. Arefiev, "Electron confinement by laser-driven azimuthal magnetic fields during direct laser acceleration", Phys. Plasmas 27, 053109 (2020).

Abstract

A laser-driven azimuthal plasma magnetic field is known to facilitate electron energy gain from the irradiating laser pulse. The enhancement is due to changes in the orientation between the laser electric field and electron velocity caused by magnetic field deflections. Transverse elec- tron confinement is critical for realizing this concept experimentally. Using analytical theory, we show that the phase velocity of the laser pulse has a profound impact on the maximum transverse size of electron trajectories. The transverse size remains constant only below a threshold energy that depends on the degree of the superluminosity, and it increases with the electron energy above the threshold. We illus- trate this finding using 3D particle-in-cell simulations. The described increase can cause electron losses in tightly focused laser pulses, so it should be taken into account when designing high-intensity experiments at high-power laser facilities.