Progress in relativistic laser–plasma interaction with kilotesla-level applied magnetic fields

Publication type
Citation

K. Weichman, A. P. L. Robinson, M. Murakami, J. J. Santos, S. Fujioka, T. Toncian, J. P. Palastro, and A. Arefiev, "Progress in relativistic laser–plasma interaction with kilotesla-level applied magnetic fields",  Physics of Plasmas 29, 053104 (2022).

Abstract

We report on progress in the understanding of the effects of kilotesla-level applied magnetic fields on relativistic laser–plasma interactions. Ongoing advances in magnetic-field–generation techniques enable new and highly desirable phenomena, including magnetic-field–amplification platforms with reversible sign, focusing ion acceleration, and bulk-relativistic plasma heating. Building on recent advancements in laser–plasma interactions with applied magnetic fields, we introduce simple models for evaluating the effects of applied magnetic fields in magnetic-field amplification, sheath-based ion acceleration, and direct laser acceleration. These models indicate the feasibility of observing beneficial magnetic-field effects under experimentally relevant conditions and offer a starting point for future experimental design.