Advances in laser-plasma interactions using intense vortex laser beams

Publication type
Citation

Y. Shi, X. Zhang, A. Arefiev, and B. Shen, "Advances in laser-plasma interactions using intense vortex laser beams", Sci. China-Phys. Mech. Astron. 67, 295201 (2024)

Abstract

Low-intensity light beams carrying orbital angular momentum (OAM), commonly known as vortex beams, have garnered significant attention due to promising applications in areas ranging from optical trapping to communication. In recent years, there has been a surge in global research exploring the potential of high-intensity vortex laser beams and specifically their interactions with plasmas. This paper provides a comprehensive review of recent advances in this area. Compared with conventional laser beams, intense vortex beams exhibit unique properties such as twisted phase fronts, OAM delivery, hollow intensity distribution, and spatially isolated longitudinal fields. These distinct characteristics give rise to a multitude of rich phenomena, profoundly influencing laser-plasma interactions and offering diverse applications. The paper also discusses future prospects and identifies promising general research areas involving vortex beams. These areas include low-divergence particle acceleration, instability suppression, high-energy photon delivery with OAM, and the generation of strong magnetic fields. With growing scientific interest and application potential, the study of intense vortex lasers is poised for rapid development in the coming years.